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1. Introduction

The theory of risk measurement has faced a paradigm shift in recent times. Following an
axiomatic – rather than an ad hoc – approach, Artzner et al. (1999) have proposed a
set of properties that any so-called coherent risk measure in the field of bank regulation and
solvency capital requirements should satisfy. Among them, the property of subadditivity
has gained particular relevance, as it ensures that issues of diversification are adequately
taken into account.
In the course, Conditional Value-at-Risk has been introduced as the most important

representative of coherent risk measures (e.g., Acerbi/Tasche (2002), Rockafel-
lar/Uryasev (2002)), and has been canonically extended towards spectral risk measures
(Acerbi (2002)). Since then, spectral risk measures have emerged as the most important
subclass of coherent risk measures. Spectral risk measures are characterized by a so-called
risk spectrum that assigns subjective weights to the quantiles of a profit and loss (P&L)
distribution in order to represent subjective risk aversion. To this end, Dowd et al.
(2008) have derived the specific subclasses of exponential and power spectral risk measures.

In the recent literature, spectral risk measures and their specific subclasses have also
been applied to numerous fields that go beyond the determination of solvency capital
requirements, such as portfolio selection (e.g., Adam et al. (2008), Brandtner (2013)),
the analysis of optimal (re-)insurance contracts (e.g., Cai et al. (2008)), and problems in
operations management (e.g., Jammernegg/Kischka (2007)), to name but a few. These
recent applications extend the scope of spectral risk measures from pure regulation-based
tools towards models of decision making. Hence, the analysis of spectral risk measures from
the perspective of decision theory, addressing standard questions such as the measurement
and the comparative statics of risk aversion has become an increasingly relevant issue.
Despite this extended scope of spectral risk measures as means of economic decision

making, questions of consistent comparative static results with respect to a decision maker’s
risk aversion received only little attention so far. That question, however, should have been
thoroughly addressed in advance, as it is well-known that even classical expected utility
theory may fail in providing consistent comparative static results in standard economic
problems such as the willingness to pay for insurance or portfolio selection (e.g., Kihlstrom
et al. (1981), Ross (1981)).

In this paper, we aim to fill this research gap by analyzing spectral risk measures and
their popular subclasses of Conditional Value-at-Risk, and exponential and power spectral
risk measures with respect to comparative risk aversion. Our contribution is twofold:

First, we argue within the classical Arrow (1965) and Pratt (1964) (AP)-framework
of (comparative) risk aversion, which has dominated the discussion of risk aversion in
hundreds of published papers of economic decision making in the expected utility framework.
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Inspired by this classical framework, the so-called spectral Arrow-Pratt measure is regularly
employed as a measure of AP-risk aversion in the literature on the new framework of
spectral risk measures. In this paper, we show that, contrary to intuition, the spectral
Arrow-Pratt measure is not a consistent measure of AP-risk aversion and provide the right
measure.

In terms of economic application, we demonstrate that the two standard problems of the
willingness to pay for insurance and the portfolio selection between a risk free and a risky
asset are covered by the framework of AP-risk aversion. Accordingly, applying the spectral
Arrow-Pratt measure to these problems as is done in the literature may yield misleading
results: A decision maker with a greater spectral Arrow-Pratt measure may only be willing
to pay less for insurance or to invest more in the risky asset than a decision maker with a
smaller spectral Arrow-Pratt measure.
Second, we argue within the extended framework of Ross (1981) (R), who has offered

another concept of (comparative) risk aversion for a more general situation where the initial
wealth is random and the risk of the final wealth can only be eliminated partly. Accordingly,
this framework addresses the shift from “more” to “less” risk, which appears to be the more
realistic setting, in particular from the point of view of the recent financial crises. We show
that neither Conditional Value-at-Risk, nor exponential and power spectral risk measures
can be completely ordered with respect to R-risk aversion. We further provide a general
“destructive” result of non-consistency between spectral risk measures and R-risk aversion.

As a consequence, these subclasses of spectral risk measures also exhibit counter-intuitive
comparative static results with respect to the respective risk aversion parameters, both in
the insurance problem and the portfolio selection problem: In the insurance problem, the
willingness to pay for insurance may be decreasing with increasing risk aversion. Likewise,
in the portfolio selection problem, the investment in the risky asset may be increasing
with increasing risk aversion. Decision makers and regulators should be aware of these
shortcomings and its economic consequences before applying spectral risk measures.

The paper proceeds as follows. Section 2 introduces spectral risk measures and the
specific subclasses under consideration. Section 3 addresses the concept of risk aversion
following Arrow (1965) and Pratt (1964), while Section 4 addresses the concept of Ross
(1981). Section 5 concludes.

2. Setting: Spectral risk measures

Let X denote the set of all real valued (P&L) random variables X on some probability space
(Ω,F ,P). Let FX(x) = F (x) = P (X ≤ x) be the cumulative distribution function of X
with corresponding quantile function F−1

X (p) = F−1(p) = sup{x ∈ R|F (x) < p}, p ∈ (0, 1]
and F−1(0) = limt→0+ F−1(t).
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2.1. Properties and representation

Spectral risk measures originally have been introduced for determining solvency capital
requirements in bank regulation. In order to satisfy this purpose adequately, they have to
fulfill a set of properties (or axioms) (Acerbi (2002), Acerbi (2004), Proposition 3.26).

Definition 2.1. A mapping ρφ : X → R is called spectral risk measure if it satisfies the
following properties for all X, Y, Z ∈ X :

– Monotonicity: X ≤ Y ⇒ ρφ(X) ≥ ρφ(Y ).

– Translation invariance: ρφ(X + c) = ρφ(X)− c, c ∈ R.

– Subadditivity: ρφ(X + Y ) ≤ ρφ(X) + ρφ(Y ).

– Positive homogeneity: ρφ(λ ·X) = λ · ρφ(X), λ ≥ 0.

– Comonotonic additivity: X, Y comonotonic (i.e., X = g(Z) and Y = h(Z) where g, h
non-increasing) ⇒ ρφ(X + Y ) = ρφ(X) + ρ(Y ).

– Law invariance: FX(x) = FY (x) for all x ∈ R⇒ ρφ(X) = ρφ(Y ).

For a thorough discussion of these properties see Acerbi (2004). In the literature, the
property of subadditivity has gained particular attention, as it ensures that spectral risk
measures adequately reflect effects of diversification. Besides subadditivity, for our analyses
the linearity of spectral risk measures induced by the properties of translation invariance
and positive homogeneity

ρφ(λ ·X + c) = λ · ρφ(X) + c, c ∈ R, λ ≥ 0 (1)

will become relevant.

Spectral risk measures have the following representation.

Theorem 2.2. Any spectral risk measure ρφ : X → R is of the form

ρφ(X) = −
1∫

0

F−1(p) · φ(p)dp, (2)

where the so-called risk spectrum φ : [0, 1]→ R+ is a non-increasing density function.

For the proof, see Acerbi (2004), Proposition 3.4. Spectral risk measures through the
risk spectrum φ assign subjective weights to the p-quantiles of a random variable X with
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smaller quantiles receiving relatively greater weights and vice versa. The antiderivative of
the risk spectrum φ(p) given by

Φ(p) =
p∫

0

φ(t)dt (3)

is a concave cumulative distribution function on [0, 1] with Φ(0) = 0, Φ(1) = 1.

In the recent literature, spectral risk measures have also been applied to numerous fields
beyond the determination of solvency capital requirements such as portfolio selection (e.g.,
Adam et al. (2008), Brandtner (2013)), optimal (re-)insurance contracts (e.g., Cai
et al. (2008)), and problems in operations management (e.g., Jammernegg/Kischka
(2007)), to name but a few.

These recent applications extend the scope of spectral risk measures from pure regulation-
based tools of risk towards models of economic decision making that are used to find
optimal solutions over a set of alternatives. In order to capture this new scope, we make
use of the following notion.

Definition 2.3. If a decision maker decides according to

X is preferred to Y ⇔ ρφ(X) ≤ ρφ(Y ), (4)

he is called a spectral risk measure (SRM)-decision maker.

Within the extended scope of spectral risk measures as a means of modeling optimal
decisions of SRM-decision makers, the tradeoff between risk and reward becomes an
important issue. Spectral risk measures regularly represent an implicit risk-reward tradeoff
(e.g., Acerbi/Simonetti (2002), p. 10). In order to make this tradeoff explicit, assume
that the risk spectrum satisfies φ(1) > 0, which is common in the literature (e.g., Dowd
et al. (2008)), and it is also satisfied for the specific subclasses of spectral risk measures
that will be introduced below. Then the risk spectrum can be decomposed by

φ(p) = φ(1) · 1 + (1− φ(1)) · φ̂(p), where φ̂(p) = φ(p)− φ(1)
1− φ(1) , (5)

such that the corresponding spectral risk measure can be rewritten as

ρφ(X) = −(φ(1) · E(X)− (1− φ(1)) · ρφ̂(X)). (6)

Thus, spectral risk measures can be denoted as (negative) linear combination of the
expectation as a reward measure and ρφ̂ as another spectral measure that captures the
“pure” risk.
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Remark 2.4. Note that a close relationship prevails between spectral risk measures and
Yaari (1987)’s dual theory of choice (see also Roell (1987) and Denneberg (1988)).
The dual theory requires the existence of some dual utility function v : [0, 1]→ [0, 1], v(0) =
0, v(1) = 1 such that the decision maker’s preference over a set of risky positions is measured
by

Dv(X) =
1∫

0

F−1(p)dv(p). (7)

If a decision maker decides according to “X is preferred to Y ⇔ Dv(X) ≥ Dv(Y )”, he is
called a dual theory of choice (DT)-decision maker. The representations of spectral risk
measures (2) and the dual theory of choice (7) up to the algebraic sign coincide if one
identifies the antiderivative of the risk spectrum Φ with the dual utility function v, with
the exception that the dual theory of choice is more general in that v not necessarily needs
to be concave. This close relationship allows us to draw on previous results on comparative
risk aversion derived for the dual theory of choice below.

2.2. Examples

The most popular spectral risk measure is Conditional Value-at-Risk (e.g., Acerbi/Tasche
(2002), Rockafellar/Uryasev (2002)). At the confidence level α ∈ [0, 1], its risk
spectrum and its antiderivative are given by

φα(p) =


1
α

for p ∈ [0, α)

0 for p ∈ [α, 1]
and Φα(p) =


1
α
· p for p ∈ [0, α)

1 for p ∈ [α, 1]
(8)

(see Figure 1). Conditional Value-at-Risk assigns a constant weight of 1
α
to the α · 100%

smallest outcomes, while the greater outcomes are not taken into account. As Conditional
Value-at-Risk does not assign a positive weight of φα(1) > 0 to the p = 1-quantile, it
initially does not represent a risk-reward tradeoff along the decomposition (6). However,
Conditional Value-at-Risk can be extended towards a (spectral) risk-reward tradeoff by
forming a negative convex combination of the random variable’s mean and Conditional
Value-at-Risk, viz

ρφ(X) = −(λ · E(X)− (1− λ) · CV aRα(X)); (9)

see Acerbi/Simonetti (2002) or Jammernegg/Kischka (2007) in more detail.

As an alternative to popular Conditional Value-at-Risk, Dowd et al. (2008) have
proposed exponential spectral risk measures, which in the course have become a relevant sub-
class of its own (e.g., Barbi/Romagnoli (2013), Cotter/Dowd (2010), Dowd/Blake
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Figure 1: Conditional Value-at-Risk for α = 0,4 (solid) and α = 0,8 (dashed)
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Figure 2: Exponential spectral risk measures for a = 1 (dashed) and a = 2 (solid)

(2006)). For exponential spectral risk measures, the risk spectrum and its antiderivative for
a > 0 are given by

φa(p) = a · e−a·p

1− e−a , p ∈ [0, 1] and Φa(p) = 1− e−a·p
1− e−a , p ∈ [0, 1] (10)

(see Figure 2). As φa(1) > 0, exponential spectral risk measures represent an implicitly
risk-reward tradeoff as given by (6).

Moreover, Dowd et al. (2008) have introduced power spectral risk measures. Here,
the risk spectrum and its antiderivative for 0 < b ≤ 1 are given by

φb(p) = b · pb−1, p ∈ [0, 1] and Φb(p) = pb, p ∈ [0, 1] (11)

(see Figure 3). Again it holds that φb(1) = b > 0, so for power spectral risk measures the
risk-reward tradeoff (6) can be easily made explicit by

ρφb(X) = −(b · E(X)− (1− b) · ρφ̂b(X)) with φ̂b(X) = b · (pb−1 − 1)
1− b . (12)
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Figure 3: Power spectral risk measures for b = 0,5 (solid) and b = 0,8 (dashed)

3. Comparative AP-risk aversion: The case of deterministic initial wealth

3.1. Definitions

We first address comparative risk aversion following Arrow (1965) and Pratt (1964).
Their framework is based on the idea of completely eliminating risk, i.e., it is assumed that
a decision maker can switch from a risky position to a risk free position. In order to model
this shift, the notion of the certainly equivalent is employed, and is related to the concepts
of risk aversion and comparative risk aversion as follows:

Definition 3.1. .

a) The certainty equivalent of a position X, c(X), indicates the certain position for which
the decision maker is indifferent to the position X.

b) A decision maker is said to be AP-risk averse if c(X) ≤ E(X) for all X ∈ X .

c) A decision maker 1 is said to be more AP-risk averse than a decision maker 2 if
c1(X) ≤ c2(X)(≤ E(X)) for all X ∈ X .

An AP-risk averse decision maker for any risky position X is willing to accept a certain
position that is less than the risky position’s expectation E(X) to avoid the risk induced
by X. The more AP-risk averse decision maker for any risky position X is willing to accept
a smaller certain position to avoid X than the less AP-risk averse decision maker.

3.2. Comparative AP-risk aversion for spectral risk measures

We now address the measurement of AP-risk aversion for spectral risk measures. To this
end, we first specify the certainty equivalent.

Theorem 3.2. The certainty equivalent of a SRM-decision maker with risk spectrum φ,
cφ(X), is given by

cφ(X) = −ρφ(X). (13)
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The proof is straightforward: The certainty equivalent is defined by ρφ(cφ(X)) = ρφ(X),
and translation invariance yields ρφ(cφ(X)) = −cφ(X).

The next two Theorems 3.3 and 3.4 address the measurement of AP-risk aversion and
comparative AP-risk aversion for spectral risk measures. While the technical essentials by
and large are known from the dual theory of choice, we for the first time apply these results
to spectral risk measures in order to point to inconsistencies in the prevailing literature,
where the so-called spectral Arrow-Pratt measure is regularly used as measure of AP-risk
aversion.

Theorem 3.3. SRM-decision makers are AP-risk averse.

For the proof, see Roell (1987), Proposition II.2, who for the dual theory of choice
proves that a DT-decision maker is AP-risk averse if and only if v(p) ≥ p for all p ∈ [0, 1].
In terms of spectral risk measures, this condition corresponds to Φ(p) ≥ p for all p ∈ [0, 1],
which by definition is satisfied for all spectral risk measures, as Φ is a concave cumulative
distribution function with Φ(0) = 0 and Φ(1) = 1.

Theorem 3.4. A SRM-decision maker with risk spectrum φ1 is more AP-risk averse than a
SRM-decision maker with risk spectrum φ2 if and only if Φ1(p)−Φ2(p) ≥ 0 for all p ∈ [0, 1].

For the proof, see again Roell (1987), Proposition II.4. For a SRM-decision maker to
be more AP-risk averse, the antiderivative of his risk spectrum has to lie above the one of
the less AP-risk averse SRM-decision maker on the entire support.

For the subclasses of spectral risk measures introduced in Section 2.2, the respective
parameters can be consistently interpreted as being parameters of AP-risk aversion, as the
following Theorem 3.5 shows.

Theorem 3.5. .
1. Let α1 and α2 be the confidence levels of two CVaR-decision makers with risk spectrum as

given in (10). Then the CVaR-decision maker with confidence level α1 is more AP-risk
averse than the CVaR-decision maker with confidence level α2 if and only if α1 ≤ α2.

2. Let a1 and a2 be the parameters of two SRM-decision makers with exponential risk
spectrum as given in (11). Then the SRM-decision maker with a1 is more AP-risk averse
than the SRM-decision maker with a2 if and only if a1 ≥ a2.

3. Let b1 and b2 be the parameters of two SRM-decision makers with power risk spectrum
as given in (12). Then the SRM-decision maker with b1 is more AP-risk averse than
the SRM-decision maker with b2 if and only if b1 ≤ b2.

The proof is given in the Appendix.
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3.3. Comparative AP-risk aversion and the spectral Arrow-Pratt measure

Inspired by the well-known Arrow-Pratt measure from expected utility theory, AP-risk
aversion in the framework of spectral risk measures in the literature so far is measured by
the so-called spectral Arrow-Pratt measure

Rφ(p) = −Φ′′(p)
φ′(p) = φ′(p)

φ(p) . (14)

As examples for this literature approach, see, among many others, the statements by
Wächter/Mazzoni (2013), p. 490, “Thus, by defining (14) a local measure of risk
aversion in terms of the risk spectrum φ (...) is defined.” (see also their Examples 1-3),
or by Barbi/Romagnoli (2013), p. 8, “(...) the exponential risk measure (ERM),
whose weights are based on the exponential utility function, where k > 0 is the constant
Arrow-Pratt coefficient of absolute risk aversion.”

As already shown in Theorem 3.4, it is the difference of the antiderivatives of the risk
spectra and not the spectral Arrow-Pratt measure that consistently measures AP-risk
aversion. More precisely, the following relationships hold between the two measures:

Theorem 3.6. Let φ1 and φ2 be the risk spectra of two SRM-decision makers. If Rφ1(p) ≥
Rφ2(p) for all p ∈ [0, 1], then the SRM-decision maker with risk spectrum φ1 is more
AP-risk averse than the SRM-decision maker with risk spectrum φ2. The converse is not
true.

The proof is given in the Appendix. Theorem 3.6 shows that the terminology of “spectral
Arrow-Pratt measure” is misleading: It is not a consistent measure of AP-risk aversion for
spectral risk measures as the classical Arrow-Pratt measure is for expected utility theory.
The following (counter-)example shows that referring to the spectral Arrow-Pratt measure
may classify a SRM-decision maker as being locally more AP-risk averse although he is
not. Note that the example is relevant also from a practical perspective, as it is based on
exponential and power spectral risk measures, both of which are well-established in the
literature on, e.g., quantile-based risk measures in insurance (e.g., Dowd/Blake (2006)).

Example 3.7. Assume two SRM-decision makers 1 and 2 with power risk spectrum Φ1

and exponential risk spectrum Φ2, respectively,

Φ1(p) = pb, 0 < b ≤ 1, p ∈ [0, 1] (15)

Φ2(p) = 1− e−a·p
1− e−a , a > 0, p ∈ [0, 1] (16)

(see Figure 4). For b = 0,5 and a = 1, it holds that Φ1(p) ≥ Φ2(p) for all p ∈ [0, 1], so
SRM-decision maker 1 is uniformly more AP-risk averse due to Theorem 3.4.

Let us now apply the spectral Arrow-Pratt measure instead, as it is commonly proposed
in the literature (e.g., Wächter/Mazzoni (2013) or Barbi/Romagnoli (2013)). We
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Figure 4: Power (solid) vs. exponential (dashed) risk spectrum and spectral Arrow-Pratt
measure

then observe

Rφ1(x) = 1
2 · p


>

=
<

 1 = Rφ2(x) if


0 ≤ p < 0,5

p = 0,5
0,5 < p ≤ 1

, (17)

i.e., SRM-decision maker 1 is ranked as being (locally) more AP-risk averse if p < 0,5,
while he is ranked as being (locally) less risk averse if p > 0,5. This split ranking, however,
is misleading as can be seen from the position

X =

x1 p

x2 1− p
, x1 < x2, p ∈ [0, 1], (18)

which covers the cases p < 0,5 as well as p > 0,5. In both cases the certainty equivalent of
X is given by

cφ(X) = −ρφ(X) = Φ(p) · x1 + (1− Φ(p)) · x2 = Φ(p) · (x1 − x2) + x2. (19)

Hence, Φ1(p) ≥ Φ2(p) for all p ∈ [0, 1] implies cφ1(X, p) ≤ cφ2(X, p) for all p ∈ [0, 1] and
confirms that the SRM-decision maker with risk spectrum φ1 is uniformly more AP-risk
averse. �

3.4. Economic relevance of comparative AP-risk aversion: Two standard
problems

We now show that the concept of AP-risk aversion is also economically relevant. To this
end, we analyze the two economic standard problems of the willingness to pay for insurance
and portfolio selection with respect to comparative risk aversion.

Regarding the insurance problem, a measure of risk aversion is consistent if it yields that
the more risk averse SRM-decision maker for any risk to insure is willing to pay a greater

10



premium. Likewise, in the portfolio selection problem between a risk free and a risky asset,
a measure of risk aversion is consistent if it yields that the more risk averse SRM-investor
always invests less in the risky asset. It will turn out that the two problems are covered
by the framework of AP-risk aversion introduced above. Accordingly, for both problems
the difference of the antiderivatives of the risk spectra and not the spectral Arrow-Pratt
measure will be the consistent measure of risk aversion.

Recall that spectral risk measures either already implicitly represent a risk-reward tradeoff
as in the case of exponential and power spectral risk measures, or can be extended towards
a (spectral) risk-reward tradeoff as in the case of Conditional Value-at-Risk.

We start with the insurance problem. A SRM-decision maker with deterministic initial
wealth w0 is faced with an additional risk X ∈ X , X 6= E(X). By signing an insurance
contract he can switch from the risky position w0 +X to the certain position w0−πφ(w0, X),
where πφ(w0, X) denotes the insurance premium that the SRM-decision maker is willing to
pay to cede X.
By definition, the insurance premium is given by

ρφ(w0 +X) = ρφ(w0 − πφ(w0, X)). (20)

Due to the linearity property of spectral risk measures (1), it does not depend on the initial
wealth w0 and shrinks to the negative certainty equivalent of X,

ρφ(X)− w0 = πφ(w0, X)− w0 ⇔

πφ(w0, X) = ρφ(X) = −cφ(X). (21)

Hence, the insurance problem is covered by the framework of AP-risk aversion. Based on
(21) and Definition 3.1, we immediately obtain the following comparative static result.

Corollary 3.8. Let φ1 and φ2 be the risk spectra of two SRM-decision makers and πφ(w0, X)
the insurance premium as given in (21). The following statements are equivalent:

1. SRM-decision maker with risk spectrum φ1 is more AP-risk averse than SRM-decision
maker with risk spectrum φ2.

2. πφ1(w0, X) ≥ πφ2(w0, X) for all X ∈ X , X 6= E(X).

Due to Corollary 3.8 and Theorem 3.4, it is the non-negative difference of the antideriva-
tives of the risk spectra and not a greater spectral Arrow-Pratt measure that is necessary
and sufficient for consistent comparative static results in the insurance problem. Con-
versely, when making use of the spectral Arrow-Pratt measure instead, the more AP-risk
averse SRM-decision maker may misleadingly be ranked as being locally less risk averse
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despite being willing to pay a greater insurance premium for some positions X, as the
(counter-)example 3.7 has shown.

Let us proceed with the portfolio selection problem, where w0 is again the deterministic
initial wealth of a SRM-investor. Let further z ∈ [0, w0] and w0 − z be the amounts that
are invested in the risk free and a risky asset, respectively. Finally, the returns of the risk
free and the risky asset are given by (rf − 1) and (r − 1), r ∈ X , r 6= E(r), E(r) > rf ,
respectively. The SRM-investor’s final wealth reads

(w0 − z) · r + z · rf . (22)

The optimal amount that is invested in the risk free asset is given by

z∗φ(w0, r) = arg
z∈[0,w0]

min ρφ((w0 − z) · r + z · rf )

= arg
z∈[0,w0]

min (w0 − z) · ρφ(r)− z · rf , (23)

where again the linearity property (1) has been used. The corresponding first order
condition reads

∂ρφ(·)
∂z

= −ρφ(r)− rf (24)

and yields

z∗φ(w0, r) =

w0 ρφ(r) > −rf = ρφ(rf )

0 ρφ(r) ≤ −rf = ρφ(rf )
. (25)

Spectral risk measures yield an “all or nothing”-decision: Instead of portfolio diversification,
either the exclusive investment in the risk free asset, or the exclusive investment in the
risky asset is optimal. This result fundamentally differs from classical results obtained for
expected utility theory or mean-variance-approaches, and it is a first pitfall of spectral
risk measures when they are used for portfolio selection. As has been recently shown by
Brandtner (2013), non-diversification also prevails in extended settings with more than
one risky asset and without the risk free asset. Note further that due to the linearity
property (1) the optimal investment does not depend on the initial wealth w0.

As the amount invested in the risk free assets solely depends on the (negative) certainty
equivalent, ρφ(r) = −cφ(r), the portfolio selection problem is covered by the framework of
AP-risk aversion and due to (25) and Definition 3.1 yields

Corollary 3.9. Let φ1 and φ2 be the risk spectra of two SRM-decision makers and z∗φ(w0, r)
the optimal amount that is invested in the risk free asset as given in (25). The following
statements are equivalent:
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1. SRM-decision maker with risk spectrum φ1 is more AP-risk averse than SRM-decision
maker with risk spectrum φ2.

2. z∗φ1(w0, r) ≥ z∗φ2(w0, r) for all r ∈ X , r 6= E(r), E(r) > rf .

Due to Corollary 3.9 and Theorem 3.9 it is again the non-negative difference of the
antiderivatives of the risk spectra and not a greater spectral Arrow-Pratt measure that is
necessary and sufficient for consistent comparative static results in the portfolio selection
problem. Employing the spectral Arrow-Pratt measure instead may be misleading as has
been shown by the (counter-)example 3.7.

4. Comparative R-risk aversion: The case of random initial wealth

4.1. Definitions

The framework of Arrow (1965) and Pratt (1964) covers decision situations where the
initial wealth is deterministic and where the risk of the final wealth can be completely
eliminated. Ross (1981) has extended this framework by assuming that the initial wealth
is random and that the risk of the final wealth can only be eliminated partly. Accordingly,
the framework of Ross (1981) addresses the shift from “more” to “less” risk, which appears
to be the more realistic setting, in particular from the point of view of the recent financial
crises.

In order to model increasing risk, Ross (1981) has made use of Rothschild/Stiglitz
(1970)’s concept of a mean preserving spread.

Definition 4.1. A random variable Z is called more risky than a random variable X if
Z = X + Y with E(Y |X) = 0.

Theorem 4.2. The following holds:

1. Z = X + Y with E(Y |X) = 0 ⇒ Z is a mean preserving spread of X, i.e.,
t∫
−∞

FZ(x)−

FX(x)dx ≥ 0 for all t ∈ R and
∞∫
−∞

FZ(x)− FX(x)dx = 0.

2. Z is a mean preserving spread of X ⇒ ∃Y such that Z d= X + Y and E(Y |X) = 0.

Note that the proposed form of increasing risk is consistent with spectral risk measures,
as all SRM-decision makers reject any mean preserving spread (for a proof, see Adam
et al. (2008), Appendix A or Leitner (2005)).

In order to capture a reduction of risk by switching from Z to X, Ross (1981) has
introduced the incremental risk premium.
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Definition 4.3. For the positions X, Y, Z = X+Y ∈ X , X 6= E(X), Y 6= E(Y ), E(Y |X) =
0, the incremental risk premium, RP (X, Y ), is defined by RP (X, Y ) = c(X)− c(X + Y ).

The incremental risk premium indicates the payment a decision maker is willing to make
to avoid Y and to switch from Z to X. Based on the incremental risk premium, R-risk
aversion and comparative R-risk aversion are defined as follows.

Definition 4.4. .

a) A decision maker is said to be R-risk averse if RP (X, Y ) ≥ 0 for all X, Y, Z = X+Y ∈
X , X 6= E(X), Y 6= E(Y ), E(Y |X) = 0.

b) A decision maker 1 is said to be more R-risk averse than a decision maker 2
if RP1(X, Y ) ≥ RP2(X)(≥ 0) for all X, Y, Z = X + Y ∈ X , X 6= E(X), Y 6=
E(Y ), E(Y |X) = 0.

A R-risk averse decision maker is willing to make a non-negative payment to avoid
increasing risk. For the more R-risk averse decision maker, this payment is greater than for
the less R-risk averse decision maker.

4.2. Comparative R-risk aversion for spectral risk measures

We now address the measurement of R-risk aversion for spectral risk measures. To this
end, we first specify incremental risk premium.

Theorem 4.5. For the positions X, Y, Z = X +Y ∈ X , X 6= E(X), Y 6= E(Y ), E(Y |X) =
0, the incremental risk premium of a SRM-decision maker with risk spectrum φ, RPφ(X, Y ),
is given by

RPφ(X, Y ) = ρφ(X + Y )− ρφ(X). (26)

The proof directly follows from the identity cφ(X) = −ρφ(X) (see Theorem 3.2).

The following Theorems 4.6 and 4.7 address the measurement of R-risk aversion and
comparative R-risk aversion for spectral risk measures. Note that the technical essentials
again are based on previous results from the dual theory of choice; their implications for
the issue of decision making under spectral risk measures, however, have not been made
explicit yet.

Theorem 4.6. SRM-decision makers are R-risk averse.
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For the proof, see Yaari (1987), Theorem 2, who for the dual theory of choice proves
that a DT-decision maker is R-risk averse if and only if v(p) is concave on the entire
support. In terms of spectral risk measures, this condition corresponds to Φ(p) being
concave on the entire support, which is satisfied by definition. Note that although the
technical requirements for AP-risk aversion (i.e., Φ(p) ≥ p, see Theorem 3.4) and R-risk
aversion (i.e., Φ(p) concave, see Theorem 3.9) differ, they are both satisfied for spectral
risk measures by definition. Consequently, for spectral risk measures, AP-risk aversion and
R-risk aversion are equivalent concepts.

Theorem 4.7. A SRM-decision maker with risk spectrum φ1 is more R-risk averse than
a SRM-decision maker with risk spectrum φ2 if and only if Φ1(p)− Φ2(p) is non-negative
and concave on the entire support.

For the proof, see Roell (1987), Proposition II.5, again for the dual theory of choice.
For a SRM-decision maker to be more R-risk averse, two conditions have to be satisfied.
The first condition requires that the antiderivative of the risk spectrum of the more R-risk
averse SRM-decision maker lies above the one of the SRM-decision maker who is less
R-risk averse, Φ1(p)− Φ2(p) ≥ 0. The second, and additional, condition requires that the
difference of the antiderivatives of the risk spectra is concave on the entire support. Hence,
greater R-risk aversion implies greater AP-risk aversion, but the converse it not true.

4.3. Comparative R-risk aversion: Three subclasses of spectral risk measures

We now specify the insights from Section 4.2 with respect to Conditional Value-at-Risk,
and exponential and power spectral risk measures. While these relevant subclasses could
be completely ordered with respect to AP-risk aversion, we show by means of a simple
counter-example that under R-risk aversion this useful property fails.

4.3.1. A (counter-)example

Building on Theorem 4.7, we argue by contradiction and assume that there exists some
p̄ < 1 such that Φ1(p)− Φ2(p) is decreasing and convex on p ∈ [p̄, 1] (see Figure 5).1 Then
one can construct a binary random variable for which the more AP-risk averse SRM-decision
maker is less R-risk averse.

Let X and X + Y be two risky positions with

X =

0 q1

1−q2
1−q1 1− q1

, X + Y =

0 q2

1 1− q2

, 0 ≤ q1 < q2 ≤ 1; (27)

1A similar but more general counter-example can be constructed by setting the less restrictive assumption
that Φ1(p)− Φ2(p) is convex on some interval p ∈ [p, p] ⊆ [0, 1]. For any of our subclasses of spectral
risk measures, however, it will turn out that Φ1(p)− Φ2(p) is decreasing and convex on some interval
[p̄, 1], and for the sake of consistency we set up the corresponding assumptions in our counter-example.
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Figure 5: Comparative R-risk aversion and difference of the antiderivatives of the risk
spectra

X + Y is constructed from X by a mean preserving spread. If SRM-decision maker 1
is more R-risk averse than SRM-decision maker 2, the incremental risk premiums (see
Definition 4.4) fulfill

RPφ1(X, Y )−RPφ2(X, Y ) ≥ 0⇔ Φ1(q2)− Φ2(q2)
1− q2

≥ Φ1(q1)− Φ2(q1)
1− q1

. (28)

However, as Φ1(p)− Φ2(p)(≥ 0) has been assumed to be decreasing and convex on [p̄, 1],
choosing q1, q2 ∈ [p̄, 1] yields

Φ1(q2)− Φ2(q2)
1− q2

<
Φ1(q1)− Φ2(q1)

1− q1
⇔ RPφ1(X, Y )−RPφ2(X, Y ) < 0, (29)

a contradiction (see Figure 5).

4.3.2. Examples

We now analyze the relationship between the popular subclasses of Conditional Value-at-
Risk, and exponential and power spectral risk measures and R-risk aversion.

To start with Conditional Value-at-Risk, the difference of the antiderivatives of the risk
spectra is given by

Φα1(p)− Φα2(p) =


p
α1
− p

α2
0 ≤ p ≤ α1

1− p
α2

α1 < p ≤ α2

0 α2 < p ≤ 1

(30)

and is convex on [α1, 1] for any two confidence levels 0 ≤ α1 < α2 ≤ 1. Figure 6 illustrates
the case for α1 = 0,4 and α2 = 0,8.
Accordingly, for any two confidence levels α1 < α2 one can construct the following

(counter-)example where the less AP-risk averse CVaR-decision maker, at the same time, is
more R-risk averse and exhibits a greater incremental risk premium.
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Figure 6: Difference of the antiderivatives of the risk spectra for Conditional Value-at-Risk
and α1 = 0,4 and α2 = 0,8

Example 4.8. Let α1 and α2, α1 < α2, be the confidence levels of two CVaR-decision
makers. Let further the two risky positions from the general (counter-)example (27) with
q1 = α1 and q2 = α2 be given by

X =

0 α1

1−α2
1−α1

1− α1

, X + Y =

0 α2

1 1− α2

. (31)

We then have

RPα1(X, Y ) = CV aRα1(X + Y )− CV aRα1(X) = 0− 0 = 0 (32)

RPα2(X, Y ) = CV aRα2(X + Y )− CV aRα2(X) = 0 + 1− α2

1− α1
· α2 − α1

α2
> 0. (33)

Contrary to intuition, the more AP-risk averse CVaR-decision maker (with confidence level
α1) is not willing to make a positive payment to reduce risk by switching from X + Y to
X, as he only takes into account the α1 · 100% worst outcomes, which for both positions
correspond to zero. The less AP-risk averse CVaR-decision maker (his confidence level is at
α2 > α1) for the position X also (partly) takes into account the states of the world where
the outcome is positive, so he is willing to make a positive payment to reduce his risk. �

The next popular case is the subclass of exponential spectral risk measures. Concerning
comparative R-risk aversion, the following holds.

Theorem 4.9. Let {ρφa , a > 0} be the subclass of exponential spectral risk measures as
given in (10). Let further a2 < a1, i.e., SRM-decision maker 2 is less AP-risk averse than
SRM-decision maker 1, and let ā = 1,5937.

1. For any two parameters a2 < a1 < ā, Φa1(p)− Φa2(p) is non-negative and concave on
[0, 1].

2. For any two parameters a1 > a2 > ā, Φa1(p) − Φa2(p) is non-negative and convex on[
p̄ = 1

a1−a2
· ln

(
a2

1·(1−e−a2 )
a2

2·(1−e−a1 )

)
, 1
]
.
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3. For any two parameters a2 < ā < a1 with ea1−1
a2

1
< ea2−1

a2
2

, Φa1(p)−Φa2(p) is non-negative

and convex on
[
p̄ = 1

a2−a1
· ln

(
a2

2·(1−e−a1 )
a2

1·(1−e−a2 )

)
, 1
]
.

The proof is given in the Appendix. In the first case, both SRM-decision makers are
assumed to be slightly AP-risk averse, i.e., a < 1,5937. Then a greater a consistently
represents greater AP- and R-risk aversion. In the second case, both SRM-decision makers
are assumed to be strongly AP-risk averse, i.e., a > 1,5937. Then the decision maker with
a1 > a2 is uniformly more AP-risk averse, but he is not uniformly more R-risk averse. By
contrast, by making use of (27), for any two a1 and a2 one can construct a (counter-)example
where the more AP-risk averse SRM-decision maker exhibits a smaller incremental risk
premium than the less AP-risk averse SRM-decision maker. We illustrate this case in more
detail in Example 4.10 below. Finally, when considering a slightly and a strongly AP-risk
averse SRM-decision maker, the results are ambiguous. If the difference a1 − a2 > 0 is
sufficiently large, the more AP-risk averse decision maker is not uniformly more R-risk
averse, while he is if the difference is sufficiently small.

Example 4.10. Let φa be the exponential risk spectrum of a SRM-decision maker as given
in (10). Let further be X and X + Y two risky positions as in (27) with q1 = 0,5 and
q2 = 0,75

X =

0 0,5

0,5 0,5
, X + Y =

0 0,75

1 0,25
. (34)

Now assume that the degree of AP-risk aversion is increased by increasing a. It holds that
(see (29))

∂Φa(q1)
∂a

· 1
1− q1

 ≤>
 ∂Φa(q2)

∂a
· 1

1− q2
if

 a ≤ 2,44
a > 2,44

. (35)

Accordingly, for a ≤ 2,44, the incremental risk premium is increasing in a. However,
for a > 2,44 the incremental risk premium is decreasing in a: Despite the SRM-decision
maker becomes more AP-risk averse, his incremental risk premium is decreasing. Figure 7
illustrates these results. �

We finally analyze the subclass of power spectral risk measures. Here the following holds.

Theorem 4.11. Let {ρφb , 0 < b ≤ 1} be the subclass of power spectral risk measures as
given in (11). Let further b1 < b2, i.e., SRM-decision maker 2 is less AP-risk averse than
SRM-decision maker 1, and let b̄ = 0,5.

1. For any two parameters b̄ < b1 < b2, Φb1(p) − Φb2(p) is non-negative and concave on
[0, 1].
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Figure 7: Incremental risk premium for exponential spectral risk measures

2. For any two parameters b1 < b2 < b̄, Φb1(p) − Φb2(p) is non-negative and convex on[
p̄ =

(
b2·(1−b2)
b1·(1−b1)

) 1
b1−b2 , 1

]
.

3. For b1 < b̄ < b2, Φb1(p)− Φb2(p) is non-negative and convex on
[
p̄ =

(
b2·(1−b2)
b1·(1−b1)

) 1
b1−b2 , 1

]
if b2 < 1− b1.

The proof is given in the Appendix. Again, if both SRM-decision makers are slightly
AP-risk averse, i.e., b > 0,5, a smaller b consistently represents greater AP- and R-risk
aversion. By contrast, if both SRM-decision makers are strongly AP-risk averse, i.e., b < 0,5,
the SRM-decision maker with b1 < b2 is uniformly more AP-risk averse, while he is not
uniformly more R-risk averse. The counter-example (27) again allows to illustrate this
general incompatibility between AP-risk aversion and R-risk aversion for SRM-decision
makers. Finally, when considering a slightly and a strongly AP-risk averse SRM-decision
maker, the results are ambiguous. The following example is given for illustration.

Example 4.12. Let φb be the power risk spectrum of a SRM-decision maker as given in
(11). As in the previous Example 4.10, let X and X + Y be two risky positions as in (27)
with q1 = 0,5 and q2 = 0,75

X =

0 0,5

0,5 0,5
, X + Y =

0 0,75

1 0,25
. (36)

Now assume that the degree of AP-risk aversion is increased by decreasing b. It holds that
(see (29))

∂Φb(q1)
∂b

· 1
1− q1

 ≤>
 ∂Φb(q2)

∂b
· 1

1− q2
if

 b ≥ 0,4593
b < 0,4593

. (37)

Accordingly, for b ≥ 0,4593, the incremental risk premium is decreasing in b, i.e., decreasing
with decreasing AP-risk aversion. However, for b < 0,4593 the incremental risk premium is
increasing in b, i.e., increasing with decreasing AP-risk aversion: Despite the SRM-decision
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Figure 8: Incremental risk premium for power spectral risk measures

maker becomes less AP-risk averse, his incremental risk premium is increasing. Figure 8
illustrates these results. �

4.3.3. R-risk aversion vs. completeness: A non-consistency result

In this section, we show that a subclass of spectral risk measures that covers any degree
of risk aversion between risk neutrality and infinite risk aversion cannot be completely
ordered with respect to R-risk aversion.

The property of completeness is defined as follows.

Definition 4.13. Let {ρφθ , θ ∈ (θ, θ)}, be a one-parameter family of spectral risk measures.
Let further X be a uniformly distributed random variable on [0, 1]. {ρφθ} is said to be
complete if ρφθ(X) can take any value in [−0,5, 0].

A one-parameter family of spectral risk measures is complete if it covers any degree of
risk aversion between risk neutrality and infinite risk aversion. If ρφθ(X) = −0,5 = −E(X),
the SRM-decision maker is risk neutral. If ρφθ(X) = 0, the SRM-decision maker is infinitely
risk averse, as in this case the spectral risk measure corresponds to the negative maximum
loss, ρφθ(X) = − inf{X(ω) : ω ∈ Ω}. Moreover, whatsoever spectral risk ρ̄ ∈ [−0,5, 0]
the SRM-decision maker wants to assign to X, there exists a corresponding parameter
θ = θ(ρ̄) that yields this risk. Note that the subclasses of Conditional Value-at-Risk, and
exponential and power spectral risk measures are complete.

Although completeness is a desirable property of a family of spectral risk measures, it,
at the same time, contradicts with R-risk aversion:

Theorem 4.14. Let {ρφθ , θ ∈ (θ, θ)} be a one-parameter family of spectral risk measures
that satisfies the completeness property as given in Definition 4.13. Then there exists at
least one pair of risk spectra θ1, θ2 ∈ (θ, θ) and p, p ∈ [0, 1] such that Φθ1(p) − Φθ2(p) is
convex on [p, p] ⊆ [0, 1].
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For the proof it is sufficient to note that the antiderivative of the risk spectrum of the
negative maximum loss is given by ΦML(p) = 1, p ∈ [0, 1], and that ΦML(p) − Φθ2(p) is
convex on [0, 1] for any θ2 ∈ (θ, θ).

Theorem 4.14 further confirms our observations from Section 4.3.2 that strongly AP-risk
averse SRM-decision makers face inconsistencies with R-risk aversion: In the extreme
case of infinite AP-risk aversion, the (negative) Maximum Loss decision maker has the
risk spectrum ΦML(p) = 1, p ∈ [0, 1], and the difference ΦML(p) − Φθ2(p) is convex on
[0, 1] for any θ2 ∈ (θ, θ). Conversely, in the extreme case of zero AP-risk aversion, the
(negative) Mean-decision maker has the risk spectrum Φµ(p) = p, p ∈ [0, 1], so the difference
Φθ2(p)− Φµ(p) is concave on [0, 1] for any θ2 ∈ (θ, θ).

4.4. Economic relevance of comparative R-risk aversion: Two standard
problems

In order to demonstrate the economic relevance of the concept of R-risk aversion, we again
analyze an insurance problem and a portfolio selection problem. Unlike the our previous
study of these problems in Section 3.4, the decision maker’s initial wealth now is assumed
to be random, and the risk of the final wealth can only be eliminated partly.
In the insurance problem with some random initial wealth, a measure of risk aversion

is consistent if it yields that the more risk averse SRM-decision maker is willing to pay a
greater insurance premium for any reduction in risk in the sense of Definition 4.1. Likewise,
in a portfolio selection problem with a risk free and a risky asset in the presence of a
random initial wealth, a measure of risk aversion is consistent if it yields that the more risk
averse SRM-investor always invests less in the risky asset. It will turn out that the two
problems are covered by the framework of R-risk aversion introduced above. Accordingly,
spectral risk measures will regularly yield counterintuitive results when being applied to
the insurance problem and the portfolio selection problem, respectively.
Once again recall that spectral risk measures either already implicitly represent a

risk-reward tradeoff as in the case of exponential and power spectral risk measures, or
can be extended towards a (spectral) risk-reward tradeoff as in the case of Conditional
Value-at-Risk.

We start with the insurance problem. A SRM-decision maker with random initial wealth
w0 +X ∈ X , X 6= E(X), is faced with an additional risk Y ∈ X , Y 6= E(Y ), E(Y |X) = 0).
By signing an insurance contract, he can switch from the risky position w0 +X + Y to the
risky position w0 + X − πφ(X, Y ), where πφ(X, Y ) denotes the insurance premium that
the SRM-decision maker is willing to pay to cede Y .
By definition, the insurance premium satisfies

ρφ(w0 +X + Y ) = ρφ(w0 +X − πφ(X, Y )). (38)
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Due to the linearity property of spectral risk measures (1), it does not depend on the initial
wealth w0 and is given by the incremental risk premium

ρφ(X + Y )− w0 = ρφ(X)− w0 + πφ(X, Y )⇔

πφ(X, Y ) = ρφ(X + Y )− ρφ(X) = RPφ(X, Y ). (39)

Hence, the insurance problem is covered by the framework of R-risk aversion. Based on
(39) and Definition 4.4, we immediately obtain the following comparative static result.

Theorem 4.15. Let φ1 and φ2 be the risk spectra of two SRM-decision makers and πφ(X, Y )
the insurance premium as given in (39). The following statements are equivalent:

1. SRM-decision maker with risk spectrum φ1 is more R-risk averse than SRM-decision
maker with risk spectrum φ2.

2. πφ1(X, Y ) ≥ πφ2(X, Y ) for all w0 +X, Y,X +Y ∈ X , X 6= E(X), Y 6= E(Y ), E(Y |X) =
0.

According to Theorems 4.7 and 4.15, a non-negative and concave difference of the
antiderivatives of the risk spectra is necessary and sufficient for consistent comparative
static results in the insurance problem.2 Accordingly, Conditional Value-at-Risk, and
exponential and power spectral risk measures regularly yield counterintuitive results as soon
as they are applied to questions of optimal insurance. In all three subclasses, the willingness
to pay for insurance is non-monotonic in the respective AP-risk aversion parameters (see
again the (counter-)examples 4.8, 4.10, and 4.12). Especially, for strongly AP-risk averse
SRM-decision makers one can always find (counter-)examples where the willingness to pay
for insurance is decreasing though they exhibit increasing AP-risk aversion.

We proceed with the portfolio selection problem. Let w0 denote the SRM-decision
maker’s deterministic initial wealth and X ∈ X , X 6= E(X) be his random initial wealth.
The amounts z ∈ [0, w0] and w0 − z, are invested in the risk free and a risky asset,
respectively. Finally, the returns of the risk free and the risky asset are given by (rf − 1)
and (r − 1), r ∈ X , r 6= E(r), E(r) > rf , r0 := r − E(r), E(r0|X) = 0, respectively. The
SRM-investor’s final wealth is given by

X + (w0 − z) · r + z · rf . (40)

2Note that due to the property of translation invariance, Theorem 4.15 also holds for E(Y ) 6= 0, when
assuming E(Y − E(Y )|X) = 0.

22



The optimal amount that is invested in the risk free asset is given by

z∗φ(X, r) = arg
z∈[0,w0]

min ρφ(X + (w0 − z) · r + z · rf )

= arg
z∈[0,w0]

min ρφ(X + (w0 − z) · r0)− (w0 − z) · E(r)− z · rf . (41)

The linearity in (41) again is induced by the linearity property (1) of spectral risk measures.
The corresponding first order condition reads

∂ρφ(·)
∂z

= ∂

∂z
ρφ(X + (w0 − z) · r0) + (E(r)− rf ) != 0⇔

∂

∂z
ρφ(X + (w0 − z) · r0) != ρφ(E(r)− rf ) (42)

The left-hand side of (42) is covered by the framework of R-risk aversion and thus yields
the following Theorem 4.16 (the proof is given in the Appendix).

Theorem 4.16. Let φ1 and φ2 be the risk spectra of two SRM-decision makers and z∗φ(X, r)
the optimal risk free investment as given by (42). The following statements are equivalent:

1. SRM-decision maker with risk spectrum φ1 is more R-risk averse than SRM-decision
maker with risk spectrum φ2.

2. z∗φ1(X, r) ≥ z∗φ2(X, r) for all X, r ∈ X , r 6= E(r), X 6= E(X), E(r) > rf , r0 = r −
E(r), E(r0|X) = 0.

According to Theorems 4.7 and 4.16, a non-negative and concave difference of the
antiderivatives of the risk spectra is necessary and sufficient for consistent comparative
static results in the portfolio selection problem. Unfortunately, for Conditional Value-at-
Risk, and exponential and power spectral risk measures this difference is regularly convex.
We thus obtain counterintuitive results in the portfolio selection problem, as the following
(counter-)examples show.

Example 4.17. Let α be the confidence level of a CVaR-decision maker. Let further be
w0, X, r0, E(r) and rf be given by

w0 = 80, X =



8 0,1

8 0,1

10 0,2

10 0,6

, r0 =



0 0,1

0 0,1

−0,05 0,2

0,0167 0,6

, E(r) = 1,06, rf = 1,05. (43)

The optimal investment in the risk free asset, z∗α, as a function of the confidence level α is
given in Figure 9.
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Figure 9: The optimal investment in the risk free asset as a function of the confidence level
α

The optimal investment exhibits two counter-intuitive characteristics. First, we again
observe a tendency towards corner solutions. Despite the entire investment opportunity set
z ∈ [0, 80] is efficient in that none of the investment opportunities is dominated in terms
of a mean preserving spread, the set of optimal solutions only consists of z∗α = {0, 40, 80}.
The reason is once again the linearity property (1), which has already been responsible
for the all-or-nothing decisions in the portfolio selection problem with deterministic initial
wealth.

Second, and as one would expect, when decreasing the CVaR-investor’s confidence level
α, the optimal investment in the risk free asset is initially increasing: We have z∗α = 0
for α ∈ (0,63, 1] and z∗α = 80 for α ∈ (0,25, 0,63), i.e., the optimum jumps from the
exclusive investment in the risky asset to the exclusive investment in the risk free asset as
the confidence level falls below α = 0,63. However, when the confidence level falls below
α = 0,25, the investment in the risk free asset is decreasing again. Instead of investing in
the risk free asset exclusively, the CVaR-investor for α < 0,25 now invests z∗ = 40 in the
risk free asset and w0−z∗ = 80−40 = 40 in the risky asset. This is clearly counter-intuitive
and follows from the piecewise convex difference of the antiderivatives of the risk spectra of
Conditional Value-at-Risk. �

Example 4.18. Let a be the parameter of a SRM-decision maker with exponential risk
spectrum. Let further be w0, X, r0, E(r) and rf be given by

w0 = 80, X =



8 0,1

8 0,1

10 0,6

10 0,2

, r0 =



0 0,1

0 0,1

−0,05 0,6

0,15 0,2

, E(r) = 1,06, rf = 1,043. (44)

The optimal investment in the risk free asset, z∗a, as a function of the parameter a is given
in Figure 4.18. Again, we observe a tendency towards corner solutions, as the set of optimal
solutions only consists of z∗a = {0, 40, 80}. Moreover, the investment in the risk free asset is
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Figure 10: The optimal investment in the risk free asset as a function of the parameter a
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Figure 11: The optimal investment in the risk free asset as a function of the parameter b

decreasing as the SRM-decision maker becomes strongly AP-risk averse: For a ∈ (2,5, 4,3),
the SRM-decision maker invests his entire wealth in the risk free asset, i.e. z∗a = 80, while
for a ∈ [4,3,∞) he switches back to a 50/50-investment, i.e. z∗a = w0 − z∗a = 40. �

Example 4.19. Let b be the parameter of a SRM-decision maker with power risk spectrum.
Let further be w0, X, r0, E(r) and rf be given by

w0 = 40, X =



8 0,1

8 0,1

10 0,6

10 0,2

, r0 =



0 0,1

0 0,1

−0,10 0,6

0,30 0,2

, E(r) = 1,06, rf = 1,047. (45)

The optimal investment in the risk free asset, z∗b , as a function of the parameter b is
given in Figure 11. Again, the set of optimal solutions only consists of three elements,
namely z∗b = {0, 20, 40}. Moreover, the investment in the risk free asset is decreasing
as the SRM-decision maker becomes strongly AP-risk averse: For b ∈ (0,35, 0,51), the
SRM-decision maker invests his entire wealth in the risk free asset, i.e. z∗a = 40, while for
b ∈ (0, 0,35] he switches back to a 50/50-investment, i.e. z∗a = w0 − z∗a = 20. �
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5. Conclusions

In this paper, we have studied the concepts of comparative risk aversion following Arrow
(1965) and Pratt (1964) on the one hand, and Ross (1981) on the other hand, together
with their implications for the willingness to pay for insurance and portfolio selection in
the context of spectral risk measures.

In the framework following Arrow (1965) and Pratt (1964), we have shown that
the difference of the antiderivatives of the risk spectra and not the spectral Arrow-Pratt
measure is the consistent measure of AP-risk aversion. Conversely, when applying the
spectral Arrow-Pratt measure instead as is done in the literature regularly, the less AP-risk
averse SRM-decision maker may be ranked as being more AP-risk averse although he ist
not. We have further shown that the framework of Arrow (1965) and Pratt (1964)
covers the standard economic problems of the willigness to pay for insurance and portfolio
selection. Consequently, the spectral Arrow-Pratt measure cannot be applied to these
problems either. If one still does, a SRM-decision maker with a greater spectral Arrow-Pratt
measure may only be willing to pay less for insurance or to invest more in the risky asset
than a SRM-decision maker with a smaller spectral Arrow-Pratt measure.

In the framework following Ross (1981), we have shown that the difference of the
antiderivatives of the risk spectra has to be non-negative and concave on the entire support
in order to provide consistent comparative static results with respect to R-risk aversion.
Neither Conditional Value-at-Risk, nor exponential and power spectral risk measures satisfy
these requirements. Accordingly, these three subclasses cannot be completely ordered with
respect to R-risk aversion. We further have provided a general non-consistency result for
spectral risk measures and R-risk aversion.

As a consequence, these subclasses of spectral risk measures also exhibit counter-intuitive
comparative static results with respect to the respective AP-risk aversion parameters, both
in the insurance problem and the portfolio selection problem: In the insurance problem,
the willingness to pay for insurance may be decreasing with increasing AP-risk aversion.
Likewise, in the portfolio selection problem, the investment in the risky asset may be
increasing with increasing AP-risk aversion. This is especially the case when SRM-decision
makers are assumed to be strongly AP-risk averse.

The paper gives directions for future research. One open comparative statics question, for
example, is how increases in the risk of the underlying random variable affect the willigness
pay for insurance or the optimal investment in the risk free asset for different spectral risk
measures or at different levels of risk aversion. Eeckhoudt et al. (1991) for expected
utility theory have shown that demand for insurance may be decreasing when increasing
the risk of the underlying random variable. It might be interesting to see whether similar
results also prevail for spectral risk measures.
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A. Proof of Theorem 3.5

For Conditional Value-at-Risk, the difference of the antiderivatives of the risk spectra

Φα1(p)− Φα2(p) =


p
α1
− p

α2
0 ≤ p ≤ α1

1− p
α2

α1 < p ≤ α2

0 α2 < p ≤ 1

(46)

for any two confidence levels 0 ≤ α1 ≤ α2 ≤ 1 is non-negative on the entire support.
We next come to exponential spectral risk measures. First note that

Rφ1(p) = −Φ′′1(p)
Φ′1(p) ≥ Rφ2(p) = −Φ′′1(p)

Φ′2(p) for all p ∈ [0, 1]⇒ Φ1(p) ≥ Φ2(p) for all p ∈ [0, 1]

(47)

(see the proof of Theorem 3.6 below). For exponential spectral risk measures,

Rφa(p) = a, (48)

which for a1 ≥ a2 yields the assertion.
Likewise, for power spectral risk measures it holds that

Rφb(p) = 1− b
p

, (49)

which for b2 ≥ b1 yields the assertion. �

B. Proof of Theorem 3.6

If-part: We first show that Rφ1(p) ≥ Rφ2(p) for all p ∈ [0, 1] ⇔ Φ1(p) = g(Φ2(p)) with
g(0) = 0, g(1) = 1 and g′ > 0, g′′ ≤ 0: It holds that

Rφ1(p) = −Φ′′1(p)
Φ′1(p) = −Φ′′2(p)

Φ′2(p) −
g′′(Φ2(p))
g′(Φ′2(p)) · Φ

′
2(p) = Rφ2(p)− g′′(Φ2(p))

g′(Φ2(p)) · Φ
′
2(p). (50)

Hence, Rφ1(p) is uniformly greater than Rφ2(p) if and only if g satisfies g′ > 0, g′′ ≤ 0.
Finally, for spectral risk measures we have Φ1(p) = g(Φ2(p)) with g(0) = 0, g(1) = 1 and

g′ > 0, g′′ ≤ 0⇒ Φ1(p)−Φ2(p) ≥ 0 for all p ∈ [0, 1] due to the concavity of Φ. This proves
the assertion.
Example 3.9 shows that the Only if-part does not hold. �
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C. Proof of Theorem 4.9

The difference Φa1(p)− Φa2(p), a1 > a2 is convex on [p̄, 1] if

Φ′′a1(p)− Φ′′a2(p) > 0 (51)

⇔ −a
2
1 · e−a1·p

1− e−a1
>
−a2

2 · e−a2·p

1− e−a2
(52)

⇔ p > p̄ = 1
a2 − a1

· ln
(
a2

2 · (1− e−a1)
a2

1 · (1− e−a2)

)
(53)

It holds that p̄ < 1 if and only if

ea1 − 1
a2

1
>
ea2 − 1
a2

2
. (54)

The function

f(a) = ea − 1
a2 (55)

is decreasing on (0, 1,5937] and increasing on (1,5937,∞), which proves 1. and 2., while 3.
follows from (53) and (54). �

D. Proof of Theorem 4.11

The difference Φb1(p)− Φb2(p), 0 < b1 < b2 ≤ 1 is convex on [p̄, 1] if

Φ′′b1(p)− Φ′′b2(p) > 0 (56)

⇔ (b1 − 1) · b1 · pb1 > (b2 − 1) · b2 · pb2 (57)

⇔ p > p̄ =
(
b2 · (1− b2)
b1 · (1− b1)

) 1
b1−b2

(58)

It holds that p̄ < 1 if and only if

b2 · (1− b2) > b1 · (1− b1). (59)

The function

f(b) = b · (1− b) (60)

is increasing on [0, 0,5] and decreasing on (0,5, 1), which proves 1. and 2., while 3. follows
from (58) and (59). �
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E. Proof of Theorem 4.15

The first order condition for the optimal risk free investment is given by

∂ρφ(·)
∂z

= ∂

∂z
ρφ(X + (w0 − z) · r0) + (E(r)− rf ) != 0⇔

∂

∂z
ρφ(X + (w0 − z) · r0) != ρφ(E(r)− rf ) (61)

First note that ρφ(X + (w0 − z) · r0) is decreasing and convex in z for z ∈ [0, w0]: ρφ(X +
(w0 − z) · r0) is decreasing in z, as decreasing z constitutes a mean preserving spread,
which is rejected by any SRM-decision maker. ρφ(X + (w0 − z) · r0) is convex in z, as the
convexity of spectral risk measures (implied by subadditivity and positive homogeneity)
for z ∈ [0, w0] yields

ρφ(X + (w0 − z) · r0) = ρφ

(
z

w0
·X + w0 − z

w0
· (X + w0 · r0)

)
≤ z

w0
· ρφ(X) + w0 − z

w0
· ρφ(X + w0 · r0). (62)

As ρφ(X + (w0 − z) · r0) itself is decreasing and convex in z for z ∈ [0, w0], the left-hand
side of (61), ∂

∂z
ρφ(X + (w0 − z) · r0), is negative and increasing in z for z ∈ [0, w0]. The

right-hand side of (61) is a negative constant. The optimal risk free investment is given at
the intersection of the left-hand side and the right-hand side.

Let φ1 and φ2 be the risk spectra of two SRM-decision makers. Then z∗φ1(X, r) ≥ z∗φ2(X, r)
for all X, r ∈ X , r 6= E(r), X 6= E(X), E(r) > rf , r0 = r−E(r), E(r0|X) = 0 if and only if

∂

∂z
ρφ1(X + (w0 − z) · r0) ≤ ∂

∂z
ρφ2(X + (w0 − z) · r0) for all z ∈ [0, w0], (63)

i.e., if and only if the left-hand side of (61) for the SRM-decision maker with risk spectrum
φ1 is greater than (or equal to) the one of the SRM-decision maker with risk spectrum φ2

for all z ∈ [0, w0]. Condition (63) is satisfied if and only if

RPφ1(X + (w0 − z2), (z2 − z1) · r0)

= ρφ1(X + (w0 − z1) · r0)− ρφ1(X + (w0 − z2) · r0)

≥ ρφ2(X + (w0 − z1) · r0)− ρφ2(X + (w0 − z2) · r0)

= RPφ2(X + (w0 − z2), (z2−z1) · r0) (64)

for all X, r ∈ X , r 6= E(r), X 6= E(X), E(r) > rf , r0 = r − E(r), E(r0|X) = 0 and for all
0 ≤ z1 ≤ z2 ≤ w0. This proves the assertion. �
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